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The results of theoretical studies on the effect of 
nonuniform stress fields encountered in prismatic 
beams under bending on the fracture of brittle 
materials are described. Derivations were car- 
ried out to determine the risk of rupture of bend- 
ing specimens subjected to a symmetrical four- 
point load of arbitrary spacing, the symmetric 
three-point loading and pure bending forming 
limiting cases of this more general loading. The 
analysis was based on materials obeying the 
Weibull distribution function with assumptions 
for either volumetric or surface flaw dispersion 
conditions. The predicted strengths of bending 
and tensile specimens are compared. An 
analytical method for the determination of the 
three Weibull parameters from a pure bending 
test is proposed. This method, based on the best 
fit of a theoretical curve to the experimental data, 
was applied successfully to experimental results 
on Columbia Resin, a brittle amorphous polymer. 

1. Introduction 
N PRlicrIcAL applications ceramic parts are almost invari- 
ably subjected to loading conditions resulting in non- 
unirorni internal stresses. i n  fact, because of the purely 

elastic nature of these substances, it  is difficult to impose 
uniform stresses on them even under the most carefully con- 
trolled conditions. i n  most laboratory tests, bodies are 
thercfore subjected to some iorm of nonuniform stress. 

i n  recent years there has been an increased awareness that 
the fracturc strength of ceramic substances can be satisfac- 
torily represented only as a statistical quantity, and suitable 
approaches have been developed to extend this statistical 
treatment to bodies subjected to nonuniform stresses. In 
all thcse theories, however, it has been assumed that the 
cumulative fracture probability for the entire body is deter- 
mined by summing the probability of fracture of its infinites- 
imal component elements, each subjected to a uniform state 
of strcss. I t  has been assumed that a stress gradient and the 
shear stresses that inevitably accompany it do not contribute 
to failure by themselves. 

To date no attempt has bcen made to confirm the validity 
of this assumption. An investigation was therefore under- 
taken to cxamine the influence of the nonuniformity of stress 
on the probability of fracture and to determine whether the 
existence of a stress gradient, per se, had a demonstrable effect 
on the fracture strength. This investigation was carried 
out in two complementary parts, namely, an analytical pro- 
gram and an experimental program. 

The results of theoretical studies concerning the influence 
of nonuniform stress fields on the fracture characteristics of 
brittle materials are presented here. The complementary 
experimental program was completed after this paper was 
submitted and the results were presented recently. 

Thc most widely accepted statistical theory of fracture is 
based on the Weibull distribution function.2 Two basic 
criteria of fracture, size and normal stress, are used, and it is 
postulated that failure in an isotropic, homogeneous material 
is fully described by three material parameters: the zero 

I 

strength, the flaw density exponent, and a scale parameter. 
Within the validity of these assumptions, the theory can 
describe failure €or any type of stress distribution, uniform 
or nonuniEorm, uniaxial or polyaxial. For these reasons, the 
Weibull theory was selected as the basis of the analytical 
work described here. 

Analyses of fracture probabilities in the presence of a stress 
gradient have been conducted by Weibull himself and more 
recently by Weiss et aL3 Although nonlinear gradients were 
investigated, the simplifying assumption of a zero value for 
the zero strength was made. 

The nonuniform stress field chosen for the present analysis 
was that of the simple beam subjected to four-point loading. 
This stress field is one of the simplest nonuniform stress 
fields that can be studied; in fact, for pure bending a single 
parameter, the stress gradient, is sufficient to describe the 
stress distribution. This specimen shape and loading con- 
dition also lends itself excellently to carefully controlled 
tests and was used for all the experimental work in this pro- 
gram. 

Basic to any experimental work on the effect of a given 
parameter is the need for obtaining a completely reliable 
fundamental statistical distribution of strengths for the 
material in question. Customarily, such is done either by 
the trial-and-error graphical method originally suggested by 
Weibull or by analytical approaches devised by  other^.^ 
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The graphical method cannot be freed, however, from errors 
attributable to subjective judgments, and the analytical 
treatments are mostly suitable for a large number of purely 
tensile specimens. 

Therefore, following the theoretical derivations for the 
effect of nonuniform stress fields, an analytical method is 
presented here for defining the best fit of a theoretical Weibull 
curve to a set of experimentally obtained data. The appro- 
priate parameters are obtained by a minimization process of 
the sum of thc mean squares. The procedure thus developed 
is then demonstrated by applying it to a series of bending 
tests conducted on Columbia Resin (CR-39) specimens. 

11. Weibull Theory 

Analysis of Fracture Probabilities in 

Two basic criteria of failure, size and normal tensile stress, 
are used in the Weibull theory. For a uniaxial stress field 
in  a homogeneous isotropic material, governed by volumetric 
flaw distribution, the probability of fracture at a given stress 
u ii; given by 

where 

is the risk of rupture and 

uu = zero probability strength (location parameter). 
m = flaw density exponent (shape parameter). 
uo = scale parameter. 

The last three parameters are associated with the material 
and are independent of size 

The mean failure stress is given by 

and the variance by 

Eyuation ( I )  shows that the theory does not make any 
special allowance for the nonuniformity of stress distribution. 
Each infinitesimal element o f  a specimen is considered to be 
under uniform tensile stress, and the risk of rupture for the 
whole specimen is obtained by integrating the risk of rupture 
of each infinitesimal element over the volume of the specimen. 
The stress gradient does not enter as an independent param- 
eter, and all thc nonuniformity effects seem to be accounted 
for by the risk of rupture. The question of whether the stress 
gradient has an independent effcct on the fracture stress is 
equivalent to  the question ol whether the Weibull theory is 
sufficient to predict failure for nonuniform stress fields. 

In a material governed by surface flaw distribution the risk 
of rupture is given by 

( 5 )  

To establish the dependence of the risk of rupture on the 
dimensions of a specimen and on the type of loading, the 
risk of rupture was calculated €or the general case of a pris- 
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Nonuniformly Stressed Brittle Materials 

\ / L/ _Exlrerne Fiber Stress 

Fig. 1. Prismatic beam under four-point loading and dis- 
tribution of  extreme fiber stress. 
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matic beam under four-point loading. 
made for both volumetric and surface flaw distribution. 

Derivations were 

111. Risk of Rupture 

( I )  Material Governed by Volumetric Flaw Distribution 
The distribution of tensile stresses in the beam shown in 

Fig. 1 is 

The risk of rupture is then composed of two parts 

Bb = Bb' + Bb" (7) 
where Bo' corresponds to the central portion o€ the specimen 
subjected to uniform bending and &,!/ refers to the outer 
portions. It can be shown that 

and 

where 

rn = [m] + 01, with [m] the largest integer less than or equal to m. 

(10) 

(1 - :)-r (11) 

(I - 2) (y)" (1 - ; + ; c) + 

Im I c = z o m +  1 - - ?  

Using equation (7) one obtains 

& = ___- V 
2(nz + 1) 

-- (- au)[ml +lIa (12) 

If m is an integer, i.e., if m = [m],  then a = 0 and equation 

W r n  + 1)muo" 

(12) reduces to 

2(nz + 1) 
Bb = ___ V 

(1 - 2) (y)" (1 - ; + c) + 
(13) ( - u*)m+l  In - 

k(m + 1 ) ~ b Q m  2Yu 
h V 
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in equation (18). The relation among the values of Be given 
in equations (19) through (22)  is illustrated in Fig. 2 by 
plotting the factor K versus the parameter m. 

(2) Material Governed by Surface Flaw Distribution 
For the stress distribution defined by equation (6) one has 

= L (1 - :) (v)" [(l - i) h + 
m + 1  

+5] + (1 - 1> ( Y ) % L b  + 
212L ( - u ~ ) [ ~ I  + I f a  (24) 

k(m + 1)ubUo'n 

FLAW DENSITY EXP0NENT.m 

Fig. 2. loading factor K vs. flaw density exponent m for material gov- 
erned by volumetric flaw distribution. 

If rn is an integer, equation (24) reduces to 

(1 - 5) ( s S ) " . b  (25 )  
Specific forms of this equation can be obtained by assigning 

valucs to the parameter k.  

( a )  Pure bending ( k  = w )  

For the specific cases mentioned before one has 

( a )  Pure bending ( k  = m) 

(b)  Fourth-point loading ( k  = 4) 

Bb = m+l L (1 - 2) (7)" ($ +; c + ;) + 

(c )  Third-point loading ( k  = 3) 

& = m+l L (1 - 2) (7)" ($ + Tx + 7 )  + 

( d )  Three-point loading (center-point loading; k = 2) ( d )  Three-point loading (center-point loading; k = 2) 

When uu = 0, both equations (24) and (25)  reduce to When uU = 0, both equations (12)  and (13) reduce to 

(30)  
h k(m + 1) - 2m 

For the specific values of k considered in the foregoing, 
equation (30) yields 

( a )  Pure  bending ( k  = m) 

Again, listed below are some typical cases of interest for 
specific values of k .  

(a) Pure  bending ( k  = w )  

H* = L (2)" (,& + b )  

(b)  Fourth-point loading ( k  = 4)  

(32) 
m + 2  

(c) Third-point loading ( k  = 3) 

Bb = L (2)" (m+ + b (33)  

( d )  Three-point loading (center-point loading; k = 2) 

( b )  Fourth-point loading ( k  = 4 )  

(c )  Third-point loading ( k  = 3) 

(21) 
V N* = ~ 

( d )  Three-point loading (center-point loading; k = 2) 

Equation (30) contains the same loading factor K as 
equation (18). In the case of surface-distributed flaws the 
loading factor can be redefined and extended to include the 
effect of the width-to-depth ratio of the beam. Thus, equa- 
tion (30) can be rewritten as 

The variation of the risk of rupture with the spacing of 
concentrated loads on the beam is described by the factor 
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Fig. 3. Loading-shape factor D vs. flaw density exponent m for 
material governed by surface flaw distribution; b/h = l / p .  
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Fig. 6. loading-shape factor D vs. flaw density exponent m 
for material governed by surface flaw distribution; b/h = 2. 
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Fig. 4. loading-shape factor D vs. flaw density exponent m 
for material governed by surface flaw distribution; b/h = '12. 

F L A W  DENSITY EXPONENT,m 

Fig. 7. Loading-shape factor D vs. flaw density exponent m 
for material governed by surface flaw distribution; b/h = 4. 

The relation among the values BB given in equations (31) 
through (34) is illustrated in Figs. 3 through 7 by plotting 
the combined loading-shape factor D versus parameter m. 

IV. 

risk of rupture in a tensile specimen is 

Relation Between Bending and Tensile Strengths 
For a material governed by volumetric flaw distribution the 

(37 )  
ut - UU m F L A W  DENSITY EXPONENT,m 

Fig. 5. Loading-shape factor D vs. flaw density exponent m for 
Bt = Vt (y-) 

where Vt is the volume of the specimen, material governed b y  surface flaw distribution; b/h = 1 .  

whereas for a prismatic specimen under pure bending the 
risk of rupture was given by equation (14). 

To compare mean failure stresses, the risks of rupture 
given in the €oregoing must be substituted in equation ( 3 )  in 
order to compute urn for the two cases. This is quite involved, 
however, for the case of pure bending since equation (3) 

k(m + 1)  - 2m (36) cannot be solved in closed-form expression. Instead, median 
failure stresses (or any stresses of a given probability of frac- 
ture €or that matter) are easily compared by equating instead 

UI, = A (2)'" D (35) 

ivhcre A is the surface area of the beam and 

with X = b / h  
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the risks of rupture corresponding to the different loading 
conditions 

from which 

For uu = 0 this expression reduces to  

1 I/% 

(39) 

In this case the relation between median stresses is the same 
as tha t  betwePn mean stresses, as can be shown easily. 
I n  the case of a classical material ( m  = m ) ,  equation (38) 
yields nt = a0 = uU. 

For a material governed by surface flaw distribution the 
risk of rupture in a tensile specimen of rectangular cross 
scction (6 x h) is 

as compared with equation (26) which gives the risk of rupture 
under conditions of pure bending. 

Equating risks of rupture one obtains the following relation: 

which, for uu = 0, reduces to 

V. Analytical Determination of Material Parameters 
Icxperimental determinations of material parameters 

generally call for testing a number of simple calibration speci- 
inem and passing a curve through the data points prescnted 
in a plot showing the probability of fracture versus the failure 
stress. Given a theory, such as the Weibull theory, an ex- 
pression for the probability of fracture can be obtained which 
is a function of specimen geometry and material parameters 
to achieve a best fit. The objective is, then, to find those 
values of the material parameters which make the theoretical 
curve fit the experimental points best. A suitable criterion for 
this purpose is the minimization of the sum of the mean 
squares differences. This method, developed in the follow- 
ing, is applicable to materials governed either by volumetric 
or surface flaw distribution. 

(1) Material Governed by Volumetric Flaw Distribution 
The probahility of fracture at  the stress un is 

S, = 1 - e-B,  (43) 

Combining this with the expression for the risk of rupture 
given in equation (14), there results 

1 V 
1 - s, 2 yfb = 111 In ~ = in H, = 1n - - In ( m  + 1) + 

( m  + 1) 1n(ufL - uU) - In un - m l n  u0 (44) 

The corresponding (estimated) value of this function of prob- 
ability of fracture obtained experimentally is 

N + 1  Y, = In In ~ - -  N + l - n  (45) 

where 

N = total number of specimens tested. 
n = serial number of specimen (wlicn specimens are ordered ac- 

cording to ascending values of the fracture stress un) .  

The least squares method requires that for a best fit 
N 

n = l  
C (Y, - y , ) ~  = minimum (46) 

The necessary conditions for the existence of this minimum 
are 

which reduce to 

(47) 

(2) Material Governed by Surface Flaw Distribution 
Using in this case the expression lor the risk of rupture 

given by equation (26) the theoretical relation between the 
probability of fracture, S,, and the corresponding failure 
stress, u,, becomes 

y, = 111 Ill ~ = 111 H, = 1 1 1 ~  + m l n  (u, - a,) - 
1 - s, 

Application of the least squares method again leads to 
equations (47), which in the present case reduce to 

N + 1  
N + l - n  

N c (In In --____ - 1n B,) = o 
n = l  

N c (In In _____ + - In H.) x N + l - n  n = l  

Equations (48) and (50), depending on the type of material, 
are solved for the three material parameters uu, uo, and m. 
They are too involved for a conventional solution to be at- 
tempted and a computer solution is required. 

VI. Experimental Work 
The material used for the experimental evaluation of the 

method described in the foregoing was Columbia Resin 
(CR-39), an amorphous brittle polymer. Thirty-six CR-39 
specimens 0.4 by 0.4 by 4 in. were cut from a sheet l / 2  in. 
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Fig. 8. lsochromatic fringe pattern n CR-39 specimen under four-poinl 
loading. 

thick; all the surfaces 01 each specimen had a uniformly 
machined finish. These spccimens were tested under four- 
point loading with a gage length of 2 in. subjected to pure 
bending and a distance of 3/4 in. betwecn loads and supports. 
The existence of pure bending between the two middle loads 
is illustrated by the isochromatic fringe pattern of Fig. 8, 
obtained on one such specimen under four-point loading. 
The specimens wcre tested in an Instron model TT testing 
machine with a crosshead spced of 0.5 in. per minute. A 
load-versus-crosshead deflection record was obtained in each 
case, and no deviation from linearity was noted. Although 
this fact does not preclude localized nonlinear deformation, 
the data were analyzed on thc basis of linear elastic behairior 
to failure. The following results wcre obtained: 

Mean failure stress: a, = 6460 psi 
Standard deviation: u = 1060 psi 
Variance: uz = 1,123,600 (psi)* 
Coefficient of variation: ZI = 16.41% 
Highest failure stress: u],igi, = 8780 psi 
Lowest failure stress: ulow = 3670 psi 

A volumctric flaw distribution was assumed, and equations 
(48) were solved by thc computer for the desired material 
paramcters. The iollowing vdues were obtained : 

uu = 940 psi 
uo = 3030 psi 
Tn = 5.79 

Tlic theoretical cumulative distribution curve of equation 
(43) for the values of the parameters found in the foregoing 
was plotted in Fig. 9 along with the experimental points 
basctl on the relation 

It is seen that the fit is very satisfactory. It should be re- 
marked, however, that the nature of the fitting criterion used 
(minimization of least squares) does not necessarily guarantee 
a best fit in other respects; e.g., the derivative of the cumula- 
tivc distribution function which provides the probability 
dcnsity function may not show an equally satisfactory correla- 
tion. 

VII. Discussion 
Equation (1 2) shows that, for materials whose fracture is 

govcrned by a volumetric flaw distribution, the only speci- 
men dimension entering the expression for the risk of rup- 
ture is the total volume V.  For a fixed value of the parameter 
k ,  variations in length, width, or depth of specimen which 
leave its volume unaffected will not affect the risk of rupture; 
the risk of rupture therefore is independent of (transversal) 
stress gradient. 

The dependence of the risk of rupture on specimen dimcn- 
sions is more complicated for a material governed by a surface 
flaw distribution. For a given material, uo, uU, and rn are 
constants. If onc is interested solely in the effect of depth 
and width on the risk of rupture, h and b should be regarded 
as being the only variables, whereas the length L and extreme 

1000 2000 3000 4000 5000 6000 7000 8000 9000 
MAXIMUM FAILURE STRESS,q (PSI) 

Fig. 9. Comparison of experimental values with theoretical 
cumulative distribution curve of best fit. 

fiber stress u,, should be kept constant. Then, the risk of 
rupture €or a pure bending specimen, as given by equation 
( 2 6 ) ,  remains constant provided b and L satisfy the relation 

h 
m + l  
~ (1 - "> + b = constant 

Ub 

Substituting h = 2 U h / &  where g is the stress gradient, 
results in 

&) (1 - 2) + b = constant 

or 

where 

2 
m + l  

c, = (u* - UJ. 

C = constant. 

From equation (5 I )  it  follows that it is possible to vary the 
stress gradient without affecting the risk of rupture, provided 
the width b varies in such a manner that equation (51) is 
satisfied, with appropriate reference to the strength of the 
material, Vh.  

For purposes of determining material parameters any type 
of bending test is suitable if uu = 0. If uu Z 0, material 
parameters can be uniquely determined from a tensile test 
or a pure bending test. This means that for four-point load- 
ing the loads should be as close to the supports as practicable, 
and yet without incurring the risk of causing shear failures 
to develop next to the support points. In  general, it  is 
possible to apply the equations for pure bending to the results 
obtained from tests of beams subjected to symmetric four- 
point loading if only fractures occurring in the portion of the 
beam under constant bending moment are regarded as being 
valid. Tests resulting in fracture outside the gage length of 
interest (between supports and loading points) would be 
discarded from the statistical analysis. 

The conventional trial-and-error method for the determi- 
nation of parameters is suitable for tensile, torsion, and pure 
bending specimens in the case of volume-distributed flaws 
and only for tensile and torsion specimens in the case of sur- 
face-distributed flaws. The method as it is usually applied 
is not entirely free of subjectivity. The analytical method 
described here is more general and is especially advantageour 
in the case of surface-distributed flaws. Its successful appli- 
cation was clearly demonstrated in the case of CR-39. 

VIII. Conclusion 
In the statistical failure theories developed to date it is 

assumed implicitly that the probability of fracture is governed 
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by the tensile normal stresses existing in an element and is 
independent of the intensity of shear strcsses existing in any 
part of a body. The overall fracture probability of a piece 
is then obtained by summing up the individual failure proba- 
bilities of infinitesimal components composing the body, this 
result remaining independent of the stress gradicnt accom- 
panying the internal stress distribution. 

The validity of this hypothesis has ncver been examined. 
The present investigation, therefore, was aimed a t  evolving a 
carefully conccived approach for investigating whether or not 
the existence of stress gradients had an independcnt influence 
on the fracture characteristics of brittle ceramic substances. 

In  this paper the results of the theoretical part of the study 
are presented. The Weibull theory was adopted as the basis 
of characterization of thc probabilistic fracture behavior of 
brittle substanccs The symmetrically loaded beam under 
four-point bcnding was selected as the principal subject of 
analysis, both because it reprcscnts one of thc easiest shapes 
for analysis and cxperiments and because it is one of the geo- 
metrical configurations that can yield conclusive proof regard- 
ing the influence of stress gradients through the simple expe- 
dient of changing the proportions but retaining the area of 
the rectangular cross section. 

h theoretical treatment was developed for the completely 
general case of an arbitrary positioning of the two sym- 
metrically disposed loads on the beam, for the case of a non- 
integral value of m and a nonvanishing value ol uu. Solutions 
of this nature were obtained for both of the broad cases possi- 

ble with the Weibull theory; that is, the cases where significant 
flaws are uniformly dispersed volumetrically or confined to the 
surface. Substantial simplifications in the resulting expres- 
sions are shown to be possible (1) if m is an integer and (2) if 
uu has a vanishing value. The special cases of pure bending 
and fourth-point, third-point, and center-point loading 
were derived, the first and the last of these representing the 
limiting cases of the general solution. 

Because no completely satisfactoiy treatment of a most 
reliable fit of the Weibull probability density curve to cxperi- 
mental data exists in the current literaturc (for uU # O), an 
analytical method of obtaining the best fit of a theoretical 
curve to a sct of test points is presentcd, following the an- 
alytical derivations for the effect of nonuniform stresses. 
The process producing this best fit is based on a minimization 
of the sum of the mean squares of theoretical and experimental 
data, which then yield the most reliable values of thrce param- 
eters descriptive of the Weibull distribution. The method- 
ology thus developed is illustratcd by applying it to a set of 
test data obtained with specimens of CR-39, a brittle poly- 
meric material. 

Experimental work in support of the analytical studies 
presented here was completed recently and the rewlts werc 
presented in another paper.’ 
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Flux Growth of Chrysoberyl and Alexandrite 
by E. F. FARRELL and J. H. FANG 

Laboratory for Insulation Research, Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 

Chrysoberyl (A12Be04) and alexandrite 
(Al2BeO4 :Cr) crystals have been grown suc- 
cessfully by the flux-melt method in lengths 
from 0.1 to 10.0 mm. A satisfactory composition 
for chrysoberyl is PbO 66.6, A1203 16.7, and Be0 
16.7 mole yo; for alexandrite, LizMoOQ 40.4, 
MooB 50.6, A1203:Cr 4.5, and Be0 4.5 mole yo. 
Morphological characteristics of the crystals pro- 

duced are described. 

1. Introduction 
IIE oxygen atoms in the chrysoberyl structure are arranged 
in a slightly distorted hexagonal close-packed fashion1 T similar to that of the corundum structure. Furtherinorc, 

the structure has a counterpart with regard to oxygen pacli- 
ing, namely the cubic close-packed spinel structure. Thus 
its similarity to ruby and to spinel make the chrysoberyl 
structure an intcresting host lattice into which various tran- 
sition metal ions can be substituted and their optical, magnetic, 
and clectrical properties investigated. Chrysoberyl may also 
be useful for solid-state maser applications It has a charac- 
teristic spectrum exhibiting green in daylight and red by in- 
candescent light. Since measurements of its physical prop- 
erties require good-quality single crystals, a program to grow 
pure and doped crystals of A12Be04 was initiated. In the pres- 
ent paper the initial success in synthesizing single crystals 
of both chrysoberyl and alexandrite is reported. 

II. Experimental 
Early attempts to  synthesize chrysoberyl have been de- 

scribed by Palache et aL2 Since attempts to duplicate their 
results were unsuccessful, a series of experiments was started 
employing other solvents, including KF, PbO, PbO-PbFz, 
VzOs, Li2MoO*, and Li2M0207. Experiments in which the 
first three solvents were used are also described briefly in 
footnote 1. 

These experiments were conductcd in an Alundum-tube 
furnace equipped with eight vertical Globars. The vari- 
able electrical power supply was equipped with a drive 
mechanism that allowed the cooling rate to be adjusted from 
100’ to 0.5”C per hour. The mixtures of component oxides 
and fluxes either just filled platinum crucibles (15, 50, and 
100 ml) or were packed tightly. At a later stage, crucibles 
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